迁移学习——CycleGAN——循环一致性对抗网络

CycleGAN

    • 1.导入需要的包
    • 2.数据加载
      • (1)to_img 函数
      • (2)数据加载
      • (3)图像转换
    • 3.随机读取图像进行预处理
      • (1)函数参数
      • (2)数据路径
      • (3)读取文件列表
      • (4)初始化结果列表
      • (5)随机采样
      • (6)读取和预处理图像
      • (7)返回结果
    • 4.残差网络块
      • (1)构造函数
      • (2)残差块层
      • (3)跳跃连接
    • 5.生成器网络
      • (1)构造函数
      • (2)编码器部分
      • (3)残差块部分
      • (4)解码器部分
      • (5)输出层
      • (6)模型初始化
      • (7)前向传播
    • 6.判别器网络
      • (1)构造函数
      • (2)判别器层
      • (3)全卷积网络部分
      • (4)输出
    • 7.缓存生成器
      • (1)构造函数
      • (2)push_and_pop 方法
    • 8.训练生成对抗网络(GAN)
    • 9.优化器
    • 10.训练循环的迭代次数
    • 11.训练循环
    • 12.训练生成器
    • 13.训练判别器
    • 14.损失打印,存储伪造图片
    • 全部代码

CycleGAN(循环一致性对抗网络),用于实现两个域(例如,风格或主题不同的图像)之间的无监督图像到图像转换。
CycleGAN的核心思想是使用生成器(Generator)和判别器(Discriminator)来学习从源域(source
domain)到目标域(target domain)的映射,同时保持循环一致性,即从目标域映射回源域应该尽可能接近原始源域图像。

1.导入需要的包

from random import randint: 从Python的random模块中导入randint函数,用于生成随机整数。

import numpy as np: 导入Numpy库,并将其重命名为np,以便在代码中使用。
import torch:导入PyTorch库。
torch.set_default_tensor_type(torch.FloatTensor):设置PyTorch的默认Tensor类型为torch.FloatTensor。
import torch.nn as nn:导入PyTorch的神经网络模块,并将其重命名为nn。
import torch.optim as optim:导入PyTorch的优化器模块,并将其重命名为optim。
import torchvision.datasets as datasets: 导入PyTorch的图像数据集模块,并将其重命名为datasets。
import torchvision.transforms as transforms:导入PyTorch的图像变换模块,并将其重命名为transforms。
import os:导入Python的操作系统模块,用于处理文件和目录。
import matplotlib.pyplot as plt:导入matplotlib的Pyplot模块,用于绘图。
import torch.nn.functional as F:导入PyTorch的函数模块,并将其重命名为F。
from torch.autograd import Variable:从PyTorch的自动求导模块中导入Variable类。
from torchvision.utils import save_image: 从PyTorch的图像处理模块中导入save_image函数。
import shutil:导入Python的文件操作模块,用于删除文件和目录。
import cv2: 导入OpenCV库,用于图像处理和计算机视觉。
import random: 导入Python的随机模块。
from PIL import Image:从Pillow库中导入Image类。
import itertools: 导入Python的迭代工具模块。

from random import randint
import numpy as np 
import torch
torch.set_default_tensor_type(torch.FloatTensor)
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import os
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.utils import save_image
import shutil
import cv2
import random
from PIL import Image
import itertools

2.数据加载

(1)to_img 函数

out = 0.5 * (x + 1): 将输入张量 x 的值从 [-1, 1] 范围转换到 [0, 1] 范围。这是因为在训练过程中,图像通常会被归一化到 [-1, 1] 范围,而显示图像时需要将其转换回 [0, 1] 范围。
out = out.clamp(0, 1): 确保所有像素值都在 [0, 1] 范围内。clamp 函数将小于0的值设为0,大于1的值设为1。
out = out.view(-1, 3, 256, 256): 将张量 out 的形状重新调整为批次的形状,其中每个样本是一个 3通道(RGB)的 256x256 图像。-1 表示自动计算批次大小。

def to_img(x):
    out = 0.5 * (x + 1)
    out = out.clamp(0, 1)  
    out = out.view(-1, 3, 256, 256)  
    return out

(2)数据加载

data_path = os.path.abspath('D:\probject\pythonProject1\pytorch\CycleGAN\data'):定义了数据的路径,使用os.path.abspath()将相对路径转换为绝对路径。
image_size = 256:指定图像的大小为256x256。
batch_size = 1:定义了批处理的大小为1。

data_path = os.path.abspath('D:\probject\pythonProject1\pytorch\CycleGAN\data')
image_size = 256
batch_size = 1

(3)图像转换

transform = transforms.Compose([: 创建一个由多个图像转换操作组成的管道。
transforms.Resize(int(image_size * 1.12), Image.BICUBIC): 将图像大小调整为原始大小的 1.12 倍。这样做是为了在后续的随机裁剪中提供更多的裁剪选择。
transforms.RandomCrop(image_size): 从调整大小后的图像中随机裁剪出 256x256 像素大小的区域。
transforms.RandomHorizontalFlip(): 以 50% 的概率随机水平翻转图像。
transforms.ToTensor(): 将 PIL 图像转换为 PyTorch 张量。
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)):对图像进行归一化处理,将每个通道的像素值从 [0, 1] 范围转换为 [-1, 1] 范围。

transform = transforms.Compose([transforms.Resize(int(image_size * 1.12), 
                                                  Image.BICUBIC), 
            transforms.RandomCrop(image_size), 
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

3.随机读取图像进行预处理

(1)函数参数

batch_size: 一个整数,表示每个批次中图像的数量。默认值为1。

def _get_train_data(batch_size=1):

(2)数据路径

train_a_filepath: 训练集A的文件路径。
train_b_filepath: 训练集B的文件路径。

	train_a_filepath = data_path + '\\trainA\\'
    train_b_filepath = data_path + '\\trainB\\'

(3)读取文件列表

train_a_list: 读取训练集A目录中的所有文件名。
train_b_list: 读取训练集B目录中的所有文件名。

   train_a_list = os.listdir(train_a_filepath)
   train_b_list = os.listdir(train_b_filepath)

(4)初始化结果列表

train_a_result: 存储处理后的训练集A图像。
train_b_result: 存储处理后的训练集B图像。

    train_a_result = []
    train_b_result = [] 

(5)随机采样

numlist: 从0到训练集A长度之间的范围中随机采样 batch_size 个索引。

numlist = random.sample(range(0, len(train_a_list)), batch_size)

(6)读取和预处理图像

对于 numlist 中的每个索引 i: 读取训练集A和B中对应的文件名。 使用 PIL.Image.open
打开图像文件,并将其转换为RGB格式。 应用之前定义的 transform 方法对图像进行预处理(包括调整大小、裁剪、翻转和归一化)。
将预处理后的图像添加到 train_a_result 和 train_b_result 列表中。

	for i in numlist:
        a_filename = train_a_list[i]
        a_img = Image.open(train_a_filepath + a_filename).convert('RGB')
        res_a_img = transform(a_img)
        train_a_result.append(torch.unsqueeze(res_a_img, 0))
        
        b_filename = train_b_list[i]
        b_img = Image.open(train_b_filepath + b_filename).convert('RGB')
        res_b_img = transform(b_img)
        train_b_result.append(torch.unsqueeze(res_b_img, 0))
        

(7)返回结果

使用 torch.cattrain_a_resulttrain_b_result
列表中的图像堆叠成一个批次,并返回这两个批次的图像。

4.残差网络块

残差块是一种常用的构建块,用于深度卷积神经网络,特别是在
ResNet(残差网络)架构中。它允许网络在学习过程中保留和利用之前层的信息,通过跳跃连接(shortcut
connections)来解决深层网络训练过程中的梯度消失问题。

(1)构造函数

def __init__(self, in_features): 构造函数接收一个参数 in_features,表示输入特征图的通道数。
super(ResidualBlock, self).__init__(): 调用父类 nn.Module 的构造函数。
self.block_layer: 定义一个顺序模型 nn.Sequential,包含残差块的所有层。

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        self.block_layer = nn.Sequential

(2)残差块层

nn.ReflectionPad2d(1):使用反射填充(padding)来扩展输入张量的边界。这种填充方式在边缘反射输入数据,以保持边缘信息的连续性。
nn.Conv2d(in_features, in_features, 3): 使用 3x3的卷积核进行卷积操作,输入和输出通道数相同。
nn.InstanceNorm2d(in_features):应用实例归一化(Instance Normalization)来对每个样本的特征图进行归一化处理。这与批量归一化(Batch Normalization)不同,它不对整个批次的数据进行归一化,而是对单个样本的特征图进行归一化。
nn.ReLU(inplace=True): 应用 ReLU 激活函数,并设置 inplace=True以便直接修改输入张量,减少内存使用。

(
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features))

(3)跳跃连接

return x + self.block_layer(x): 这是残差块的核心,它将输入张量 x 与
self.block_layer(x) 的输出相加,形成跳跃连接。这样,即使 self.block_layer
的输出为零(即网络未能学习到任何东西),输入 x 仍然可以通过跳跃连接直接传递到下一层,从而保持了信息的流通。

	def forward(self, x):
        return x + self.block_layer(x)

5.生成器网络

生成器的目的是将输入图像从一个域转换到另一个域。

(1)构造函数

super(Generator, self).__init__(): 调用父类 nn.Module 的构造函数。
model: 初始化一个列表,用于存储生成器网络中的层。

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

(2)编码器部分

nn.ReflectionPad2d(3): 使用反射填充(padding)来扩展输入张量的边界。
nn.Conv2d(3, 64, 7): 使用 7x7 的卷积核将输入图像(3 通道)转换为 64 通道的特征图。
nn.InstanceNorm2d(64):应用实例归一化。
nn.ReLU(inplace=True): 应用 ReLU 激活函数。
for _ in range(2):重复以下层两次,以逐渐减少特征图的尺寸。
nn.Conv2d(in_features, out_features, 3,stride=2, padding=1): 使用 3x3 的卷积核,步长为 2,进行降采样。
nn.InstanceNorm2d(out_features): 应用实例归一化。
nn.ReLU(inplace=True):应用 ReLU 激活函数。

model = [nn.ReflectionPad2d(3), 
                 nn.Conv2d(3, 64, 7), 
                 nn.InstanceNorm2d(64), 
                 nn.ReLU(inplace=True)]

        in_features = 64
        out_features = in_features * 2
        for _ in range(2):
            model += [nn.Conv2d(in_features, out_features, 
                                3, stride=2, padding=1), 
            nn.InstanceNorm2d(out_features), 
            nn.ReLU(inplace=True)]
            in_features = out_features
            out_features = in_features*2

(3)残差块部分

for _ in range(9): 重复添加 9 个残差块,这些块是 CycleGAN 生成器的核心,用于学习域之间的映射。

 	for _ in range(9):
            model += [ResidualBlock(in_features)]

(4)解码器部分

out_features = in_features // 2: 准备进行上采样,将特征图的尺寸加倍。
for _ in range(2): 重复以下层两次,以逐渐增加特征图的尺寸。
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1): 使用 3x3 的转置卷积核,步长为 2,进行上采样。
nn.InstanceNorm2d(out_features): 应用实例归一化。
nn.ReLU(inplace=True): 应用 ReLU 激活函数。

    out_features = in_features // 2
        for _ in range(2):
            model += [nn.ConvTranspose2d(
                    in_features, out_features, 
                    3, stride=2, padding=1, output_padding=1), 
                nn.InstanceNorm2d(out_features), 
                nn.ReLU(inplace=True)]
            in_features = out_features
            out_features = in_features // 2

(5)输出层

nn.ReflectionPad2d(3): 使用反射填充。
nn.Conv2d(64, 3, 7): 使用 7x7的卷积核将特征图转换回 3 通道的图像。
nn.Tanh(): 应用 Tanh 激活函数,将输出值范围映射到 [-1, 1]。

	model += [nn.ReflectionPad2d(3), 
                  nn.Conv2d(64, 3, 7), 
                  nn.Tanh()]

(6)模型初始化

self.gen = nn.Sequential( * model): 将所有层组合成一个顺序模型。

self.gen = nn.Sequential( * model)

(7)前向传播

def forward(self, x): 定义前向传播函数。
x = self.gen(x): 通过生成器网络传递输入 x。
return x: 返回生成器的输出。

	def forward(self, x):
        x = self.gen(x)
        return x 

6.判别器网络

(1)构造函数

super(Discriminator, self).__init__(): 调用父类 nn.Module 的构造函数。
self.dis: 定义一个顺序模型 nn.Sequential,包含判别器网络的所有层。

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.dis = nn.Sequential

(2)判别器层

nn.Conv2d(3, 64, 4, 2, 1, bias=False): 使用 4x4 的卷积核,步长为2,进行降采样,输入通道数为 3(RGB),输出通道数为 64。
nn.LeakyReLU(0.2, inplace=True): 应用Leaky ReLU 激活函数,设置斜率为 0.2。
for _ in range(3): 重复以下层三次,以逐渐减少特征图的尺寸。
nn.Conv2d(in_features, out_features, 4, 2, 1, bias=False): 使用 4x4 的卷积核,步长为 2,进行降采样。
nn.InstanceNorm2d(out_features): 应用实例归一化。
nn.LeakyReLU(0.2, inplace=True): 应用 Leaky ReLU 激活函数。

(
            nn.Conv2d(3, 64, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.InstanceNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(128, 256, 4, 2, 1, bias=False),
            nn.InstanceNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),

(3)全卷积网络部分

nn.Conv2d(256, 512, 4, padding=1): 使用 4x4 的卷积核,不进行降采样,输入通道数为256,输出通道数为 512。
nn.InstanceNorm2d(512): 应用实例归一化。
nn.LeakyReLU(0.2, inplace=True): 应用 Leaky ReLU 激活函数。
nn.Conv2d(512, 1, 4, padding=1):使用 4x4 的卷积核,不进行降采样,输入通道数为 512,输出通道数为 1。

			nn.Conv2d(256, 512, 4, padding=1),
            nn.InstanceNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(512, 1, 4, padding=1))  

(4)输出

return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0], -1):对判别器输出的特征图进行平均池化操作,然后将其展平为一维向量。这个一维向量将作为最终的判别结果,其长度为 1,表示输入图像的真实性(接近 1表示真实,接近 0 表示假)。

	def forward(self, x):
        x = self.dis(x)
        return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0], -1)

7.缓存生成器

(1)构造函数

def __init__(self, max_size=50): 定义了一个构造函数 init,用于在创建ReplayBuffer 对象时初始化其属性。
self.max_size = max_size: 初始化缓冲区的大小。
self.data = []: 初始化一个空列表 self.data,用于存储缓存的数据。

class ReplayBuffer():
#     """
#     缓存队列,若不足则新增,否则随机替换
#     """
    def __init__(self, max_size=50):
        self.max_size = max_size
        self.data = []

(2)push_and_pop 方法

def push_and_pop(self, data): 定义了一个方法,用于将新数据推入缓冲区,并在需要时弹出旧数据。
to_return = []: 初始化一个空列表 to_return,用于存储从缓冲区中弹出的数据。
for element in data.data:: 遍历传入的数据 data.data 中的每个元素。
element = torch.unsqueeze(element, 0):将每个元素展平为一维张量。这通常是为了确保张量的形状与预期的形状匹配,以便后续的操作可以正确执行。
if len(self.data) < self.max_size:: 如果缓冲区中还没有达到最大容量,则将新元素添加到缓冲区。
self.data.append(element): 将新元素添加到缓冲区。
to_return.append(element): 将新元素添加到 to_return 列表中。
else:: 如果缓冲区已满,则随机替换缓冲区中的一个元素。
if random.uniform(0,1) > 0.5:: 如果随机数大于 0.5,则从缓冲区中随机选择一个元素替换。
i = random.randint(0, self.max_size-1): 随机选择一个索引。
to_return.append(self.data[i].clone()): 将缓冲区中的元素复制并添加到 to_return列表中。
self.data[i] = element: 用新元素替换缓冲区中的元素。
else:: 如果随机数小于或等于 0.5,则直接添加新元素到 to_return 列表中。
to_return.append(element): 将新元素添加到 to_return 列表中。
return Variable(torch.cat(to_return)): 返回 to_return 列表中所有元素的拼接张量。Variable 是一个 PyTorch 类,用于表示可变的张量。torch.cat 函数用于将多个张量拼接在一起。

def push_and_pop(self, data):
        to_return = []
        for element in data.data:
            element = torch.unsqueeze(element, 0)
            if len(self.data) < self.max_size:
                self.data.append(element)
                to_return.append(element)
            else:
                if random.uniform(0,1) > 0.5:
                    i = random.randint(0, self.max_size-1)
                    to_return.append(self.data[i].clone())
                    self.data[i] = element
                else:
                    to_return.append(element)
        return Variable(torch.cat(to_return))

8.训练生成对抗网络(GAN)

fake_A_buffer = ReplayBuffer(): 创建了一个名为 fake_A_buffer 的 ReplayBuffer实例。ReplayBuffer是一个用于缓存和随机替换数据的结构,在训练循环中用于缓存生成器生成的假图像,以便在后续的训练步骤中用于训练判别器。
fake_B_buffer = ReplayBuffer(): 创建了一个名为 fake_B_buffer 的 ReplayBuffer实例。这个缓冲区的作用与 fake_A_buffer 类似,用于缓存从生成器 netG_B2A 生成的假图像。

fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()

netG_A2B = Generator(): 创建了一个名为 netG_A2B 的 Generator 实例。Generator是一个用于生成新图像的神经网络,在这里,它将从域 A 生成域 B 的图像。
netG_B2A = Generator(): 创建了一个名为 netG_B2A 的 Generator 实例。这个生成器将从域 B生成域 A 的图像。
netD_A = Discriminator(): 创建了一个名为 netD_A 的 Discriminator实例。Discriminator 是一个用于判断图像是否真实的神经网络,在这里,它用于判断 A 类图像是否真实。
netD_B = Discriminator(): 创建了一个名为 netD_B 的 Discriminator实例。这个判别器用于判断 B 类图像是否真实。

netG_A2B = Generator()
netG_B2A = Generator()
netD_A = Discriminator()
netD_B = Discriminator()

criterion_GAN = torch.nn.MSELoss(): 定义了一个名为 criterion_GAN 的 MSELoss
损失函数。这个损失函数用于计算 GAN 损失,即判别器对真实图像和假图像的预测之间的差异。
criterion_cycle = torch.nn.L1Loss(): 定义了一个名为 criterion_cycle 的 L1Loss损失函数。这个损失函数用于计算循环一致性损失,即生成器生成的图像与其输入图像之间的差异。
criterion_identity = torch.nn.L1Loss(): 定义了一个名为 criterion_identity 的 L1Loss损失函数。这个损失函数用于计算身份损失,即生成器生成的图像与其输入图像之间的差异。

criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()

d_learning_rate = 3e-4 : 定义了判别器的学习率。
g_learning_rate = 3e-4:定义了生成器的 learning rate。
optim_betas = (0.5, 0.999): 定义了优化器的超参数betas,这是用于计算梯度下降的动量项的值。

d_learning_rate = 3e-4  
g_learning_rate = 3e-4
optim_betas = (0.5, 0.999)

9.优化器

g_optimizer = optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()), lr=d_learning_rate): 创建了一个名为 g_optimizer 的Adam 优化器实例。Adam 是一种常用的优化算法,用于调整神经网络的权重。这里,itertools.chain函数用于将两个生成器的参数合并为一个单一的迭代器,以便于一起优化。lr 参数指定了学习率,它用于控制权重更新的速度。

da_optimizer = optim.Adam(netD_A.parameters(), lr=d_learning_rate):创建了一个名为 da_optimizer 的 Adam 优化器实例,用于训练判别器 netD_A。

db_optimizer = optim.Adam(netD_B.parameters(), lr=d_learning_rate):创建了一个名为 db_optimizer 的 Adam 优化器实例,用于训练判别器 netD_B。

g_optimizer = optim.Adam(itertools.chain(netG_A2B.parameters(), 
                                         netG_B2A.parameters()), 
            lr=d_learning_rate)
da_optimizer = optim.Adam(netD_A.parameters(), lr=d_learning_rate)
db_optimizer = optim.Adam(netD_B.parameters(), lr=d_learning_rate)

10.训练循环的迭代次数

num_epochs = 100: 定义了训练循环的迭代次数。epoch是一个训练周期,在这个周期内,所有数据都会被遍历一次。在这里,训练循环将执行 100 个周期。

num_epochs = 100

11.训练循环

for epoch in range(num_epochs):: 开始一个循环,该循环将执行指定的次数(由 num_epochs定义)。
real_a, real_b = _get_train_data(batch_size): 从数据集中获取一批真实图像real_a 和 real_b。
target_real = torch.full((batch_size,), 1).float():创建一个全为 1 的张量 target_real,用于指示真实图像。
target_fake =torch.full((batch_size,), 0).float(): 创建一个全为 0 的张量target_fake,用于指示假图像。
g_optimizer.zero_grad():清除生成器的梯度,以便于下一次前向传播和反向传播时不会累积梯度。

for epoch in range(num_epochs): 

    real_a, real_b = _get_train_data(batch_size)
    target_real = torch.full((batch_size,), 1).float()
    target_fake = torch.full((batch_size,), 0).float()
    
	g_optimizer.zero_grad()

12.训练生成器

same_B = netG_A2B(real_b).float(): 使用生成器 netG_A2B 从真实图像 real_b生成相似的图像 same_B。

loss_identity_B = criterion_identity(same_B, real_b) * 5.0: 计算same_B 和 real_b 之间的身份损失,并乘以 5.0 以增加其权重。

same_A = netG_B2A(real_a).float(): 使用生成器 netG_B2A 从真实图像 real_a生成相似的图像 same_A。

loss_identity_A = criterion_identity(same_A, real_a) * 5.0: 计算same_A 和 real_a 之间的身份损失,并乘以 5.0 以增加其权重。

fake_B = netG_A2B(real_a).float(): 使用生成器 netG_A2B 从真实图像 real_a 生成假图像fake_B。

pred_fake = netD_B(fake_B).float(): 使用判别器 netD_B 判断 fake_B 是否为假图像。

loss_GAN_A2B = criterion_GAN(pred_fake, target_real): 计算判别器对 fake_B的预测和真实图像的损失,即 GAN 损失。

fake_A = netG_B2A(real_b).float(): 使用生成器 netG_B2A 从真实图像 real_b 生成假图像fake_A。

pred_fake = netD_A(fake_A).float(): 使用判别器 netD_A 判断 fake_A 是否为假图像。

loss_GAN_B2A = criterion_GAN(pred_fake, target_real): 计算判别器对 fake_A的预测和真实图像的损失,即 GAN 损失。

recovered_A = netG_B2A(fake_B).float(): 使用生成器 netG_B2A 从假图像 fake_B生成恢复的图像 recovered_A。

loss_cycle_ABA = criterion_cycle(recovered_A, real_a) * 10.0: 计算recovered_A 和 real_a 之间的循环一致性损失,并乘以 10.0 以增加其权重。

recovered_B = netG_A2B(fake_A).float(): 使用生成器 netG_A2B 从假图像 fake_A生成恢复的图像 recovered_B。

loss_cycle_BAB = criterion_cycle(recovered_B, real_b) * 10.0: 计算recovered_B 和 real_b 之间的循环一致性损失,并乘以 10.0 以增加其权重。

loss_G = (loss_identity_A + loss_identity_B + loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB): 将所有损失加在一起,得到生成器的总损失。

loss_G.backward(): 对总损失进行反向传播,计算每个参数的梯度。

g_optimizer.step():会对生成器的所有参数进行梯度更新,以最小化生成器损失函数。

# 第一步:训练生成器
    same_B = netG_A2B(real_b).float()
    loss_identity_B = criterion_identity(same_B, real_b) * 5.0   
    same_A = netG_B2A(real_a).float()
    loss_identity_A = criterion_identity(same_A, real_a) * 5.0
    
    fake_B = netG_A2B(real_a).float()
    pred_fake = netD_B(fake_B).float()
    loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
    fake_A = netG_B2A(real_b).float()
    pred_fake = netD_A(fake_A).float()
    loss_GAN_B2A = criterion_GAN(pred_fake, target_real)
    recovered_A = netG_B2A(fake_B).float()
    loss_cycle_ABA = criterion_cycle(recovered_A, real_a) * 10.0
    recovered_B = netG_A2B(fake_A).float()
    loss_cycle_BAB = criterion_cycle(recovered_B, real_b) * 10.0  
    loss_G = (loss_identity_A + loss_identity_B + loss_GAN_A2B + 
              loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB)
    loss_G.backward()    
    g_optimizer.step()

13.训练判别器

da_optimizer.zero_grad(): 清除判别器 A 的梯度,以便于下一次前向传播和反向传播时不会累积梯度。

pred_real = netD_A(real_a).float(): 使用判别器 A 来判断真实图像 real_a 是否为真实图像。

loss_D_real = criterion_GAN(pred_real, target_real): 计算判别器 A对真实图像的预测和真实图像的损失,即 GAN 损失。

fake_A = fake_A_buffer.push_and_pop(fake_A): 从 fake_A_buffer 中获取一批fake_A 图像,这些图像是从生成器 A 生成的假图像。

pred_fake = netD_A(fake_A.detach()).float(): 使用判别器 A 来判断 fake_A是否为假图像。由于 fake_A 是从 fake_A_buffer 中获取的,它已经与生成器的梯度解耦,因此不需要梯度信息。

loss_D_fake = criterion_GAN(pred_fake, target_fake): 计算判别器 A 对fake_A 的预测和假图像的损失,即 GAN 损失。

loss_D_A = (loss_D_real + loss_D_fake) * 0.5: 将判别器 A的真实图像损失和假图像损失加在一起,得到判别器 A 的总损失。

loss_D_A.backward(): 对判别器 A 的总损失进行反向传播,计算每个参数的梯度。
da_optimizer.step(): 使用之前计算的梯度来更新判别器 A 的参数。

   # 第二步:训练判别器
    # 训练判别器A
    da_optimizer.zero_grad()
    pred_real = netD_A(real_a).float()
    loss_D_real = criterion_GAN(pred_real, target_real)
    fake_A = fake_A_buffer.push_and_pop(fake_A)
    pred_fake = netD_A(fake_A.detach()).float()
    loss_D_fake = criterion_GAN(pred_fake, target_fake)
    loss_D_A = (loss_D_real + loss_D_fake) * 0.5
    loss_D_A.backward()
    da_optimizer.step()
    # 训练判别器B
    db_optimizer.zero_grad()
    pred_real = netD_B(real_b)
    loss_D_real = criterion_GAN(pred_real, target_real)
    fake_B = fake_B_buffer.push_and_pop(fake_B)
    pred_fake = netD_B(fake_B.detach())
    loss_D_fake = criterion_GAN(pred_fake, target_fake)
    loss_D_B = (loss_D_real + loss_D_fake) * 0.5
    loss_D_B.backward()
	db_optimizer.step()

14.损失打印,存储伪造图片

print('Epoch[{}],loss_G:{:.6f} ,loss_D_A:{:.6f},loss_D_B:{:.6f}' .format(epoch, loss_G.data.item(), loss_D_A.data.item(), loss_D_B.data.item())):打印当前训练周期(epoch)的损失,包括生成器损失(loss_G)和两个判别器损失(loss_D_A 和 loss_D_B)。
if (epoch + 1) % 20 == 0 or epoch == 0:: 检查当前训练周期是否是 20的倍数,或者是否是第一个周期。如果是,则执行以下操作。
b_fake = to_img(fake_B.data): 将判别器 B的输入(fake_B)转换回图像格式。
a_fake = to_img(fake_A.data): 将判别器 A的输入(fake_A)转换回图像格式。
a_real = to_img(real_a.data): 将真实图像 A 转换回图像格式。
b_real = to_img(real_b.data): 将真实图像 B 转换回图像格式。
save_image(a_fake,'../tmp/a_fake.png'): 将 a_fake 图像保存到文件 …/tmp/a_fake.png。
save_image(b_fake, '../tmp/b_fake.png'): 将 b_fake 图像保存到文件…/tmp/b_fake.png。
save_image(a_real, '../tmp/a_real.png'): 将 a_real图像保存到文件 …/tmp/a_real.png。
save_image(b_real, '../tmp/b_real.png'):将 b_real 图像保存到文件 …/tmp/b_real.png。

 #损失打印,存储伪造图片
    print('Epoch[{}],loss_G:{:.6f} ,loss_D_A:{:.6f},loss_D_B:{:.6f}'
      .format(epoch, loss_G.data.item(), loss_D_A.data.item(), 
              loss_D_B.data.item()))
    if (epoch + 1) % 20 == 0 or epoch == 0:  
        b_fake = to_img(fake_B.data)
        a_fake = to_img(fake_A.data)
        a_real = to_img(real_a.data)
        b_real = to_img(real_b.data)
        save_image(a_fake, '../tmp/a_fake.png') 
        save_image(b_fake, '../tmp/b_fake.png') 
        save_image(a_real, '../tmp/a_real.png') 
        save_image(b_real, '../tmp/b_real.png') 

在这里插入图片描述
在这里插入图片描述

全部代码

from random import randint
import numpy as np 
import torch
torch.set_default_tensor_type(torch.FloatTensor)
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import os
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.utils import save_image
import shutil
import cv2
import random
from PIL import Image
import itertools   
 def to_img(x):
    out = 0.5 * (x + 1)
    out = out.clamp(0, 1)  
    out = out.view(-1, 3, 256, 256)  
    return out

# 数据加载 
data_path = os.path.abspath('D:\probject\pythonProject1\pytorch\CycleGAN\data')
image_size = 256
batch_size = 1

transform = transforms.Compose([transforms.Resize(int(image_size * 1.12), 
                                                  Image.BICUBIC), 
            transforms.RandomCrop(image_size), 
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
def _get_train_data(batch_size=1):
    
    train_a_filepath = data_path + '\\trainA\\'
    train_b_filepath = data_path + '\\trainB\\'
    
    train_a_list = os.listdir(train_a_filepath)
    train_b_list = os.listdir(train_b_filepath)
    
    train_a_result = []
    train_b_result = [] 
    
    numlist = random.sample(range(0, len(train_a_list)), batch_size)
    
    for i in numlist:
        a_filename = train_a_list[i]
        a_img = Image.open(train_a_filepath + a_filename).convert('RGB')
        res_a_img = transform(a_img)
        train_a_result.append(torch.unsqueeze(res_a_img, 0))
        
        b_filename = train_b_list[i]
        b_img = Image.open(train_b_filepath + b_filename).convert('RGB')
        res_b_img = transform(b_img)
        train_b_result.append(torch.unsqueeze(res_b_img, 0))
        
    return torch.cat(train_a_result, dim=0), torch.cat(train_b_result, dim=0)

# """
# 残差网络block
class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        self.block_layer = nn.Sequential(
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features),
            nn.ReLU(inplace=True),
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            nn.InstanceNorm2d(in_features))
        
    def forward(self, x):
        return x + self.block_layer(x)
# 生成器
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
             
        model = [nn.ReflectionPad2d(3), 
                 nn.Conv2d(3, 64, 7), 
                 nn.InstanceNorm2d(64), 
                 nn.ReLU(inplace=True)]

        in_features = 64
        out_features = in_features * 2
        for _ in range(2):
            model += [nn.Conv2d(in_features, out_features, 
                                3, stride=2, padding=1), 
            nn.InstanceNorm2d(out_features), 
            nn.ReLU(inplace=True)]
            in_features = out_features
            out_features = in_features*2

        for _ in range(9):
            model += [ResidualBlock(in_features)]

        out_features = in_features // 2
        for _ in range(2):
            model += [nn.ConvTranspose2d(
                    in_features, out_features, 
                    3, stride=2, padding=1, output_padding=1), 
                nn.InstanceNorm2d(out_features), 
                nn.ReLU(inplace=True)]
            in_features = out_features
            out_features = in_features // 2

        model += [nn.ReflectionPad2d(3), 
                  nn.Conv2d(64, 3, 7), 
                  nn.Tanh()]

        self.gen = nn.Sequential( * model)
        
    def forward(self, x):
        x = self.gen(x)
        return x 
# 判别器 

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.dis = nn.Sequential(
            nn.Conv2d(3, 64, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.InstanceNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(128, 256, 4, 2, 1, bias=False),
            nn.InstanceNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(256, 512, 4, padding=1),
            nn.InstanceNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(512, 1, 4, padding=1))        
        
    def forward(self, x):
        x = self.dis(x)
        return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0], -1)


class ReplayBuffer():
#     """
#     缓存队列,若不足则新增,否则随机替换
#     """
    def __init__(self, max_size=50):
        self.max_size = max_size
        self.data = []
        
    def push_and_pop(self, data):
        to_return = []
        for element in data.data:
            element = torch.unsqueeze(element, 0)
            if len(self.data) < self.max_size:
                self.data.append(element)
                to_return.append(element)
            else:
                if random.uniform(0,1) > 0.5:
                    i = random.randint(0, self.max_size-1)
                    to_return.append(self.data[i].clone())
                    self.data[i] = element
                else:
                    to_return.append(element)
        return Variable(torch.cat(to_return))
    
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()

netG_A2B = Generator()
netG_B2A = Generator()
netD_A = Discriminator()
netD_B = Discriminator()

criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()

d_learning_rate = 3e-4  # 3e-4
g_learning_rate = 3e-4
optim_betas = (0.5, 0.999)

g_optimizer = optim.Adam(itertools.chain(netG_A2B.parameters(), 
                                         netG_B2A.parameters()), 
            lr=d_learning_rate)
da_optimizer = optim.Adam(netD_A.parameters(), lr=d_learning_rate)
db_optimizer = optim.Adam(netD_B.parameters(), lr=d_learning_rate)

num_epochs = 100
for epoch in range(num_epochs): 

    real_a, real_b = _get_train_data(batch_size)
    target_real = torch.full((batch_size,), 1).float()
    target_fake = torch.full((batch_size,), 0).float()
    
    g_optimizer.zero_grad()
    
    # 第一步:训练生成器
    same_B = netG_A2B(real_b).float()
    loss_identity_B = criterion_identity(same_B, real_b) * 5.0   
    same_A = netG_B2A(real_a).float()
    loss_identity_A = criterion_identity(same_A, real_a) * 5.0
    
    fake_B = netG_A2B(real_a).float()
    pred_fake = netD_B(fake_B).float()
    loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
    fake_A = netG_B2A(real_b).float()
    pred_fake = netD_A(fake_A).float()
    loss_GAN_B2A = criterion_GAN(pred_fake, target_real)
    recovered_A = netG_B2A(fake_B).float()
    loss_cycle_ABA = criterion_cycle(recovered_A, real_a) * 10.0
    recovered_B = netG_A2B(fake_A).float()
    loss_cycle_BAB = criterion_cycle(recovered_B, real_b) * 10.0  
    loss_G = (loss_identity_A + loss_identity_B + loss_GAN_A2B + 
              loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB)
    loss_G.backward()    
    g_optimizer.step()
    
    
    # 第二步:训练判别器
    # 训练判别器A
    da_optimizer.zero_grad()
    pred_real = netD_A(real_a).float()
    loss_D_real = criterion_GAN(pred_real, target_real)
    fake_A = fake_A_buffer.push_and_pop(fake_A)
    pred_fake = netD_A(fake_A.detach()).float()
    loss_D_fake = criterion_GAN(pred_fake, target_fake)
    loss_D_A = (loss_D_real + loss_D_fake) * 0.5
    loss_D_A.backward()
    da_optimizer.step()
    # 训练判别器B
    db_optimizer.zero_grad()
    pred_real = netD_B(real_b)
    loss_D_real = criterion_GAN(pred_real, target_real)
    fake_B = fake_B_buffer.push_and_pop(fake_B)
    pred_fake = netD_B(fake_B.detach())
    loss_D_fake = criterion_GAN(pred_fake, target_fake)
    loss_D_B = (loss_D_real + loss_D_fake) * 0.5
    loss_D_B.backward()
    db_optimizer.step()
    
    
    #损失打印,存储伪造图片
    print('Epoch[{}],loss_G:{:.6f} ,loss_D_A:{:.6f},loss_D_B:{:.6f}'
      .format(epoch, loss_G.data.item(), loss_D_A.data.item(), 
              loss_D_B.data.item()))
    if (epoch + 1) % 20 == 0 or epoch == 0:  
        b_fake = to_img(fake_B.data)
        a_fake = to_img(fake_A.data)
        a_real = to_img(real_a.data)
        b_real = to_img(real_b.data)
        save_image(a_fake, '../tmp/a_fake.png') 
        save_image(b_fake, '../tmp/b_fake.png') 
        save_image(a_real, '../tmp/a_real.png') 
        save_image(b_real, '../tmp/b_real.png') 
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/742490.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Springboot 前端传参后台接收当不存在参数bean对象时报错解决

后端接收代码 PostMapping(value "/updateUser") public String updateUser(RequestBody SysUser sysUser) {} 当前端传送多于的参数时报错如下&#xff1a; Resolved [org.springframework.http.converter.HttpMessageNotReadableException: JSON parse error: U…

怎么改png图片的颜色?

要改变PNG图片的颜色&#xff0c;可以采取以下几种方法&#xff1a; 使用Photoshop等图像编辑软件&#xff1a;或者&#xff0c;也可以使用Photoshop中的选区工具&#xff08;如矩形选框、椭圆选框、套索工具等&#xff09;选中图片中需要改变颜色的部分&#xff0c;然后创建一…

小白上手AIGC-基于FC部署stable-diffusion

AIGC AIGC&#xff08;人工智能创造内容&#xff09;作为一种基于人工智能技术生成内容的新型创作模式。打破了过去大家对于AI的理解都是说只能涉足部分领域而无法涉足艺术或者是其他的创作领域的定律&#xff0c;现在的AIGC也能够创作内容了&#xff0c;而不再只是单纯的返回…

基于SpringBoot+Vue新闻管理系统设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;还…

3_电机的发展及学习方法

一、电机组成及发展 1、什么是励磁&#xff1f; 在电磁学中&#xff0c;励磁是通过电流产生磁场的过程。 发电机或电动机由在磁场中旋转的转子组成。磁场可以由 永磁体或励磁线圈产生。对于带有励磁线圈的机器&#xff0c;电流必须在线圈中流动才能产生&#xff08;激发&#x…

HTML基础入门知识

HTML基础使用 文章目录 HTML基础使用1、什么是HTML2、web标准4、HTML语法规则5、常用的标签标题标签段落标签换行标签文本格式化标签div和span标签图片标签路径链接标签注释 1、什么是HTML 什么是网页 网站是指在因特网上根据一定的规则&#xff0c;使用 HTML 等制作的用于展示…

视创云展虚拟展厅融入AI智能助手,有哪些优势?

随着科技的日新月异&#xff0c;AI人工智能技术在各行业中已经得到了广泛的应用和实践&#xff0c;正深刻改变着我们的工作和生活方式。 为了给企业的营销展示注入新的活力&#xff0c;视创云展在其虚拟展厅中巧妙融入了「AI智能助手」。当用户沉浸在虚拟展厅的自由探索之中时…

【Feature Pyramid Networks for Object Detection】

Feature Pyramid Networks for Object Detection 摘要引言2 相关工作3 FPN4 应用摘要 特征金字塔是识别系统中用于检测不同尺度对象的基本组件。但是,最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们在计算和内存方面都很密集。在这篇论文中,我们利用深度卷积…

PD虚拟机支持M3吗 PD虚拟机怎样配置图形卡

最近有很多人在问M3芯片的苹果电脑和M2相比&#xff0c;有哪些提升的功能。实际上&#xff0c;M3芯片的苹果电脑拥有与M2相同的CPU与GPU数量&#xff0c;但比M2多50亿个晶体管&#xff0c;并引入了动态缓存、增强型神经网络引擎等技术&#xff0c;性能、功能均进一步加强。面对…

业务架构交付物

背景 业务的核心元素、扩展元素以及它们的协同关系&#xff0c;业务架构和其他架构的关系等等已经有了不少认识&#xff0c;那么&#xff0c;通过对业务架构的还原和分析&#xff0c;到底能够得到什么业务架构的内容呢&#xff1f;它可以是一套流程框架体系&#xff0c;也可以…

基于SpringBoot前后端分离在线骑行网站设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f;感兴趣的可以先收藏起来&#xff0c;还…

C语言实现的飞机票系统解析

前言 操作系统&#xff1a;Windows下运行。如果需要在Linux运行&#xff08;单机版&#xff09;&#xff0c;则需要修改删除conio.h&#xff0c;自己写个头文件获取键盘输入。我已经写好了getch.h文件&#xff0c;需要将其导入使用。 开发环境&#xff1a;CodeBlocks || VS C…

2024高考-优先选专业还是优先选学校

分数限制下&#xff0c;选好专业还是选好学校&#xff1f; 24年高考帷幕落下&#xff0c;一场新的思考与选择悄然来临。对于每一位高考考生&#xff0c;学校和专业都是开启大学新生活的两个前置必选项。但有时候“鱼与熊掌不可兼得”&#xff0c;在分数受限的条件下&#xff0…

作业6.20

1.已知网址www.hqyj.com截取出网址的每一个部分(要求&#xff0c;该网址不能存入文件中) 2.将配置桥接网络的过程整理成文档&#xff0c;发csdn 步骤i&#xff1a;在虚拟机设置中启用桥接模式 1. 打开VMware虚拟机软件。 2. 选择您想要配置的虚拟机&#xff0c;点击菜单栏中的“…

减少液氮罐内液氮损耗的方法

监测与管理液氮容器的密封性能 液氮容器的密封性能直接影响液氮的损耗情况。一个常见的损耗源是容器本身的密封不良或老化导致的泄漏。为了有效减少液氮损耗&#xff0c;首先应当定期检查液氮容器的密封性能。这可以通过简单的方法如肉眼检查外观&#xff0c;或者更精确的方法…

在线客服源码系统全端通用 源码完全开源可以二次开发 带完整的安装代码包以及搭建教程

系统概述 在线客服源码系统采用了先进的技术架构&#xff0c;包括前端界面、后端服务、数据库等部分。前端界面采用了响应式设计&#xff0c;能够自适应不同的设备屏幕尺寸&#xff0c;为用户提供良好的使用体验。后端服务采用了高性能的服务器架构&#xff0c;确保系统的稳定…

中国首例!「DataKit」上架亚马逊云科技 Marketplace add-ons

在 2022 年的 re:Invent 大会上&#xff0c;亚马逊云科技宣布了一项重大更新&#xff1a;亚马逊云科技 Marketplace 为 Amazon Elastic Kubernetes Service&#xff08;Amazon EKS&#xff09;提供了附加组件的支持。这一创新功能极大地丰富了 EKS 的生态系统&#xff0c;使用户…

【力扣】重排链表

&#x1f525;博客主页&#xff1a; 我要成为C领域大神 &#x1f3a5;系列专栏&#xff1a;【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 本博客致力于分享知识&#xff0c;欢迎大家共同学习和交流。 给定一个单链表…

大模型训练数据

自《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》发布以来&#xff0c;我国数据要素建设不断深入&#xff0c;在国家数据局等 17 部门联合印发的《“数据要素 ” 三年行动计划&#xff08;2024 - 2026 年&#xff09;》进一步明确 “建设高质量语料库和基础…

邮件推送服务的高级功能有哪些?怎么使用?

邮件推送服务的效果如何评估&#xff1f;怎么选择邮件营销服务&#xff1f; 邮件推送服务不断发展&#xff0c;提供了丰富的高级功能&#xff0c;帮助企业提升营销效果&#xff0c;优化客户体验。AokSend将探讨一些邮件推送服务的高级功能&#xff0c;并说明它们如何为企业带来…